Objavljeno: 26.3.2024 | Avtor: Miran Varga | Monitor April 2024

Analitika več kot le podpira človeško inteligenco

Večja jasnost vpogledov v podatke ter odprava napak (in ovir) so izboljšali upravljanje podatkov, kar vodi v hitrejše sprejemanje odločitev in povečuje produktivnost zaposlenih. Naložbe v podatkovno analitiko se podjetjem lahko bliskovito hitro povrnejo.

Ustvarjanje, zbiranje, obdelava in celo shranjevanje podatkov so danes ključnega pomena za vsako podjetje. Podatki namreč vsebujejo številne skrite informacije, ki »čakajo«, da jih raziščeta (vsaj) dva – najprej podatkovni znanstvenik, za njim pa še poslovni uporabnik s poznavanjem posameznega področja, na katero se podatki nanašajo. Analiza podatkov je pomembna naloga, ki že odloča o uspehu sodobnih podjetij. Prav zato ta vedno več denarja vlagajo v rešitve s področja podatkovne analitike. Koliko denarja pravzaprav? Velikost svetovnega trga rešitev za obdelavo množičnih podatkov in poslovne analitike je bila leta 2020 ocenjena na skoraj 200 milijard evrov, leta 2030 pa naj bi podjetja za te rešitve porabila že okoli 650 milijard evrov. Eksponentna rast kaže na vse večje priznavanje pomena podatkovne analitike pri pridobivanju konkurenčne prednosti v poslu.

Področje podatkovne analitike se ne razvija zgolj zaradi tehnološkega napredka, temveč tudi zaradi želja podjetij, da bi bolje razumela lastno poslovanje, izdelke in potrošnike ter njihove navade, zahteve in pričakovanja. Številni trendi na področju podatkovne analitike spreminjajo način, kako podjetja izkoriščajo svoje podatke. V nadaljevanju predstavljamo nekaj najočitnejših.

Analitika, nadgrajena z umetno inteligenco

Analitika podatkov, ki jo poganja umetna inteligenca, je zaslužna za številne spremembe v poslovanju sodobnih podjetij. Vzpon umetne inteligence v podatkovni analitiki je izboljšal vizualizacijo in analizo podatkov ter s tem okrepil človeške sposobnosti za razumevanje in obdelavo podatkov. Sistemi umetne inteligence v navezi z naprednimi algoritmi analize podatkov odločevalcem v podjetjih omogočajo hitrejše in prožnejše sprejemanje odločitev.

Podatkovna analitika z umetno inteligenco je »v trendu« predvsem zaradi naprednih in dinamičnih algoritmov, ki ocenjujejo podatke na različnih ravneh in jih primerjajo na načine, ki jih ni mogoče izvesti s tradicionalnimi metodami – vsaj ne tako, kot bi to počeli ljudje. Algoritmi umetne inteligence so uporabni na številnih področjih: ponekod so proizvodne čase v industriji pohitrili tudi za polovico, čeprav se je to zdelo sprva nemogoče; med pisarniškimi delavci pa je kar 80 odstotkov zaposlenih navedlo izboljšanje produktivnosti po tem, ko so v roke dobili programsko opremo, podprto z umetno inteligenco. Vse to ni ostalo spregledano v vodstvih podjetij, ki so rešitve s področja poslovne analitike uvrstila na prednostne sezname.

Podatkovno usmerjena umetna inteligenca

Eden od trendov podatkovne analitike, podatkovno usmerjena umetna inteligenca, se nanaša na sistematično urejanje podatkov, ki so zbrani in oblikovani za učenje sistemov umetne inteligence. Osredotoča se predvsem na razumevanje, uporabo in sprejemanje odločitev na podlagi podatkov. Ne opira se torej na algoritme, temveč uporablja podatkovno analitiko in strojno učenje za učenje iz podatkov za njihovo boljše upravljanje. Podatkovni sloj se v tem primeru uporablja pri aktivnem upravljanju metapodatkov in samodejnem povezovanju podatkov. Sistematični pristop k ravnanju z množičnimi podatki pa olajša naloge podatkovnih znanstvenikov, ki s podatki učijo svoje algoritme. In prav zato so podatkovni znanstveniki izjemnega pomena za razvoj podatkovno usmerjene umetne inteligence, saj morajo temeljito razmisliti, s kakšnimi podatki (in ne le kako) bodo algoritme umetne inteligence učili. Ta se namreč stvari mimogrede lahko nauči uporabljati tudi (zelo) narobe. Samo spomnite se prvi klepetalnih botov, ki so jih prosto spustili na splet. V enem dnevu so postali reklama za sovražni govor, pa čeprav so se zgolj učili svojega spletnega nastopa od spletnih uporabnikov, ki so z njimi klepetali.

Analitika in robno računalništvo

Eden od trendov analize podatkov je tudi t. i. računalništvo na robu (angl. Edge Computing), ki je pravzaprav vrsta naprav, strežnikov in omrežij v bližini uporabnikov – in njihovih podatkov. Računalništvo na robu ima jasen namen: uporablja se za zbiranje podatkov iz najrazličnejših naprav in sistemov, ki so bliže uporabniku. Namesto da bi se podatki pošiljali »čez cel internet« v oddaljen podatkovni center (in nazaj), se pošljejo na bližnji strežnik v istem ali bližnjem omrežju, kjer je zakasnitev manjša, računalniške zmogljivosti pa še vedno dovolj velike za obdelavo v skoraj realnem času. Gre za računalniško paradigmo, pri kateri se podatki obdelujejo na obrobju omrežja, blizu nastanka, zato pa robno računalništvo pospeši potovanje podatkov od zbiranja, prek obdelave in nazaj na napravo ali k odločevalcu. Tako ta, domači ali poslovni uporabnik, hitreje dobi natančne (beri: obdelane) podatke in dragocene vpoglede, ki mu pomagajo pri (bolj) informiranih odločitvah. Ta pristop je dragocen v poslovnem svetu, saj ustvarja priložnosti za hitrejše sprejemanje boljših odločitev, utemeljenih na podatkih.

Ob vsem naštetem je jasno, da podjetja potrebujejo strokovnjake, ki bodo znali delati s podatki in z analitičnimi rešitvami. Zgolj kupovanje programske opreme z bogato funkcionalnostjo namreč ni (več) dovolj, če je zaposleni ne znajo izkoristiti. Naložbe v podatkovno analitiko naj se torej začno pri kadrih in njihovih kompetencah.

Naroči se na redna tedenska ali mesečna obvestila o novih prispevkih na naši spletni strani!

Komentirajo lahko le prijavljeni uporabniki

Najbolj brano

  • Izobraževanje zaposlenih za prepoznavanje ribarjenja je neučinkovito

    Ker so zaposleni eden najučinkovitejših vektorjev za vdore v poslovne sisteme, so različne delavnice, tečaji in urjenja, kako prepoznati ribarjenje (phishing) zlasti v večjih podjetjih postala del rednega izobraževanja. A raziskovalci z Univerze v San Diegu so pokazali, da je uspeh tovrstnih izobraževanj sila pičel.

    Objavljeno: 18.8.2025 07:00
  • Flipper Zero postaja priljubljeno orodje za vdiranje v avtomobile

    Preiskava portala 404 Media je razkrila črni trg programske opreme, ki omogoča, da se priljubljena naprava Flipper Zero spremeni v orodje za odklepanje vozil različnih proizvajalcev.

    Objavljeno: 22.8.2025 13:15
  • Nove vrste dron

    Podjetje Insta360 je predstavilo povsem nov koncept drona Antigravity A1, ki združuje 360-stopinjsko snemanje in FPV-letenje. 

    Objavljeno: 18.8.2025 10:00
  • Umetna inteligenca napovedala antibiotika proti gonoreji in MRSA

    Raziskovalci z MIT-a so uporabili generativno umetno inteligenco, da bi našli nove kandidate za antibiotike. Preverili so 36 milijonov različnih spojin, med njimi tudi takšne, ki sploh še niso nikoli obstajale. Med 24 najobetavnejšimi kandidati, ki so jih tudi sintetizirali in preizkusili, jih je sedem izkazalo aktivnost kot antibiotiki. Dva sta bila v miškah učinkovita proti okužbam gonoreji in MRSA.

    Objavljeno: 18.8.2025 05:00
  • Novi Android bo Cimetova rolica

    Google ostaja zvest svoji interni tradiciji poimenovanja različic operacijskega sistema Android po sladicah. 

    Objavljeno: 19.8.2025 10:30
  • V sredo pozor! Dobili bomo obveščanje o nevarnostih prek pametnih telefonov

    Uprava za zaščito in reševanje bo vzpostavila sistem za množično obveščanje in alarmiranje SI-ALARM, ki bo deloval prek potisnih sporočil na pametnih telefonih. Javno testiranje bodo izvedli 27. septembra, ko bomo vsi uporabniki pametnih telefonov dobili testno sporočilo. V prihodnosti bodo tudi prek novega sistema javnost opozarjali na nevarnost.

    Objavljeno: 21.8.2025 16:00
 
  • Polja označena z * je potrebno obvezno izpolniti
  • Pošlji